
INL/RPT‑22‑65856
Revision 0

Analytics-at-scale of Sensor
Data for Digital Monitoring
in Nuclear Plants
January 2022

3rd Annual Report
Cody Walker, Vivek Agarwal, Nancy Lybeck
Idaho National Laboratory

Pradeep Ramuhalli
Oak Ridge National Laboratory

Mike Taylor
Electric Power Research Institute



DISCLAIMER
This information was prepared as an account of work sponsored by an

agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.



INL/RPT-22-65856
Revision 0

Analytics-at-scale of Sensor Data for Digital
Monitoring of Nuclear Plants

3rd Annual Report

Cody Walker, Vivek Agarwal, Nancy Lybeck
Idaho National Laboratory

Pradeep Ramuhalli
Oak Ridge National Laboratory

Mike Taylor
Electric Power Research Institute

February 2021

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517



Page intentionally left blank



iii

ABSTRACT
Nuclear power plants (NPPs) collect and store large volumes of

heterogeneous data from various components and systems. With recent advances
in machine learning (ML) techniques, these data can be leveraged to develop
diagnostic and short-term forecasting models to better predict the future
condition of equipment. Maintenance operations can then be planned in advance
whenever degraded performance is predicted, resulting in fewer unplanned
outages and the optimization of maintenance activities. This helps reduce
maintenance costs and improve the overall economics of nuclear power.

This report focuses on Fiscal Year 2021 research progress and the
development of a short-term forecasting process that leverages a feature selection
process to distill large volumes of heterogeneous data and predict specific
equipment parameters. A variety of feature selection methods, including Shapley
Additive Explanations (SHAP) and variance inflation factor (VIF), were used to
select the optimal features as inputs for three ML methods: long short-term
memory (LSTM) networks, support vector regression (SVR), and random forest
(RF). Each combination of model and input features was used to predict a pump
bearing temperature both 1 and 24 hours in advance, based on actual plant system
data. The optimal inputs for the LSTM and SVR were selected using the SHAP
values, while the optimal input for the RF consisted solely of the response
variable itself. Each model produced similar 1-hour-ahead predictions, with root
mean square errors (RMSEs) of roughly 0.006. For the 24-hour-ahead
predictions, differences could be seen between LSTM, SVR, and RF, as reflected
by model performances (in terms of RMSE) of 0.036 ± 0.014, 0.0026 ± 0, and
0.063 ± 0.004, respectively. As big data and continuous online monitoring
become more widely available, the proposed feature selection process can be
used for many applications beyond the prediction of process parameters within
nuclear infrastructure.

This report summarizes the Fiscal Year 2021 research progress
encompassing the (1) data cleaning and feature selection necessary for ML
applications; (2) development of short-term forecasting models to predict future
plant process parameters at both single and multiple time steps ahead; and (3)
validation of the feature selection methods and short-term forecasting models,
given new data from different systems.
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Analytics-at-scale of Sensor Data for Digital
Monitoring of Nuclear Plants

1. INTRODUCTION
Nuclear plant sites collect and store large volumes of data collected from various equipment and

systems. These datasets typically include plant process parameters, maintenance records, technical logs,
online monitoring data, and equipment failure data. The collection of such data affords an opportunity to
leverage data-driven machine learning (ML) and artificial intelligence technologies to provide diagnostic
and prognostic capabilities within the nuclear power industry. However, these datasets are potentially
unstructured and collected at different temporal and spatial resolutions. Handheld (i.e., manual)
measurements are collected either at periodic intervals or on an as-needed basis, while other datasets may
be streamed and archived via plant computers. The recorded parameters for a specific piece of equipment
may also vary from site to site, adding complexity to the data processing methodology. The unstructured
nature of the data can be challenging for the development of scalable, reliable models for predicting
future equipment parameters (the terms "process parameters" and "parameters" are used interchangeably
hereinafter), without proper data cleaning and preprocessing.

For most ML techniques, the collected data are preprocessed and a set of features are selected. It is
well known that input features significantly impact the model's prediction performance and training time
[1] –[4]. When facing a large number of input features, the dimensionality may be reduced through
feature extraction, feature selection, or a combination of both [5], [6].

Feature extraction techniques combine the original measurements in a manner that generates new
features (from which a subset can be chosen to reduce the dimensionality), or can be used to extract
useful information or features from the data [7]. One example of feature extraction, as found in wind
turbine health monitoring, is the absolute difference in blade angle position [6]. Another example of
feature extraction is principal component analysis (PCA), in which input features are combined to
produce a new set of orthogonal features [8], [9]. Principal components (PCs) are linear combinations of
the observed features, with the first PC extracting the maximum amount of information (i.e., variability)
from the feature set. Subsequent PCs optimize the remaining information contained within the feature set
under the constraint of being orthogonal (i.e., uncorrelated) to the preceding PCs [9]. Because the PCs are
the eigenvectors of the associated covariance matrix, the eigenvalues are therefore related to the amount
of information contained within each PC. Feature extraction, and thus dimensionality reduction, is then
performed by removing those PCs associated with the least amount of information.

Feature selection is the process of choosing the best combination of features from the original input
feature space. Feature selection methods are primarily divided into two categories: filters and wrappers
[10]. Filters are open-loop methods that measure feature characteristics (e.g., information, dependency,
consistency, and distance) while being fast and scalable [5], [10], [11]]. Those features calculated as
having the best characteristics are then chosen as inputs for the model. Wrappers combine the feature
selection process with a learning algorithm so that the selection process is based on model performance.
This allows consideration of the dependence between variables [12], [13]. However, wrappers are prone
to overfitting and can be computationally expensive [10]. Hybrid and ensemble methods integrate filters
and wrappers alike, thereby benefiting from their complementary approaches [10], [14].

Three of the most common feature selection techniques—apart from the ones used in this report—are
mutual information (MI) [15], recursive feature elimination [16], and analysis of variance (ANOVA)
tests. MI uses entropy as a means of determining the amount of information gained by each input feature.
[15] used MI as the basis for a minimally redundant, maximally relevant feature selection method for
multi-class support vector machine classification of railcar conditions. Recursive feature elimination
recursively trains a model, calculates a cross-validation score, and then removes the least important
feature, as determined via the internal feature ranking [16]. Feature importance ranking is common to
methods such as random forest (RF). The cross-validation score is used to determine at what point enough
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features have been selected to adequately describe the system. To estimate the wear on a gear
transmission system, [16] used recursive feature elimination to reduce a set of 5,650 features down to the
top 15. ANOVA is a statistical method that uses hypothesis testing to determine whether a given result or
feature is significant [17]. [18] used ANOVA to determine whether various wind turbine bearing
temperature measurements significantly differed from each other. If the variables do not significantly
differ, one of them may be removed from the analysis. Other methods for feature extraction utilize deep
learning to skip the feature extraction step altogether. [19] used an end-to-end architecture that fully
automated the feature extraction process for diagnosing COVID-19 from x-ray images.

Though many approaches to feature selection are described in the literature, there is still a need to
objectively assess short-term forecasting models—especially those using ML—based on data from
operating plants. This project closed this gap, along with several others thus far.

In the first year of the research, the project team developed a general methodology for the
technoeconomic analysis of wireless sensor modalities for use in monitoring equipment condition [20],
[21].

In the second year of the research, the project team focused on developing and evaluating integrated
algorithms for diagnostic and prognostic estimation of equipment condition, in collaboration with Exelon
Generating Station [22], [23]. The feedwater and condensate system (FCS) was used as the identified
balance-of-plant system. Data associated with the system were provided to Idaho National Laboratory and
Oak Ridge National Laboratory for analysis. The Electric Power Research Institute provided technical
guidance and direction on the project, as well as essential reference documents related to fault conditions
observed in the FCS.

In the third year of the research, the project team developed short-term forecasting capabilities by
comparing three different ML techniques for predicting a nuclear power plant (NPP)'s FCS parameters,
and how various input features affect the ML model's performance. The team then formalized the
preprocessing steps required to integrate heterogeneous nuclear plant data. These preprocessing steps
include both feature selection and the necessary data cleaning. Finally, validation of the developed
approaches and algorithms were completed using new data from different systems [24].

The rest of this report is arranged as follows: Section 2 gives the background for the report,
descriptions of each of the selected models, and the data preprocessing needs; Section 3 presents the
selection of the short-term forecasting models; Section 4 details the methodology for multi-step
forecasting; Section 5 details the model hyperparameters generated for this research, compares the
performance of each model (as the input features vary), and covers the validation results; and Section 6
concludes by summarizing the progress and highlighting its significance.

2. SYSTEM AND DATA DESCRIPTION
Data in this analysis were primarily recorded from the condensate pumps (CPs) and condensate

booster pumps (CBPs) found within the FCS. The primary purpose of the FCS is to condense steam and
collect the drainage in the main condenser before purifying, preheating, and pumping the water back to
the reactor vessel [25]. The CPs provide the driving force for pushing the condensate through auxiliary
systems such as the steam jet air ejectors condenser, steam packing exhaust condenser, off-gas condenser,
and demineralizers—all of which work to condition the condensate. Afterwards, the CBPs are the driving
force of the flow as the condensate travels through a string of low-pressure heaters that work to preheat
the water to the required temperature. In the boiling-water reactor (BWR) system of interest, the CPs and
CBPs are driven by a shared motor.

The available sensor data were recorded for a 5-year period and include variables such as:

 generator gross load (MW)

 average feedwater flow rates (million gallons/second)

 temperatures from the feedwater pumps, CPs, CBPs, and associated motors (oC)
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 pressures within the condenser, CPs, CBPs, and turbines (psig)

 current to the CP and CBP drive motors (amps).

The recorded data were primarily collected from the FCS, but some temperatures, pressures, and flow
rates came from other components and subsystems such as the reactor or turbine system. Each dataset
consists of unlabeled data and is sampled hourly. There was no indication as to whether any portion of the
data corresponded with equipment failure. Furthermore, the data did not give sufficient information to
determine the cause of each derate. Data preprocessing was necessary, as the data contained outliers,
missing values, and several temperature signals that experience a clear seasonal trend: colder in winter,
warmer in summer.

2.1 Short-Term Forecasting
From data collection to decision making, the generalized steps for producing short-term forecasting

models are as follows:

 Collect, clean, and explore the data.

 Determine the relevant features.

 Train and evaluate the models.

 Visualize the results for more informed decision making.

A more detailed approach that leverages digital monitoring capabilities to create useful diagnostic,
prognostic, and short-term forecasting models for existing NPPs can be seen in Figure 1. This research is
part of the broader vision detailed in Figure 1. The overall project focuses on addressing digital
monitoring challenges that range from deployment of wireless sensor technology in the NPP
environment, to feature selection and data analytics that drive online component monitoring, to
visualization for decision-making purposes. Each task is vital for ensuring that the right people get the
right information at the right time.

Figure 1. Steps for leveraging digital monitoring to enable cost-effective predictive maintenance for
nuclear power plants.
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This research focuses on the data processing and data analytics aspects of determining relevant
features for short-term forecasting models. Inputting irrelevant features into ML models not only
increases training times as a result of the extra input dimensions, but can actively hurt model
performance. For coverage of other aspects related to prognostics and forecasting, [7] is an excellent
review paper covering critical component analysis and sensor selection, along with prognostic
methodologies and tool evaluation.

2.2 Data Preprocessing
The data in this research were taken from a BWR's FCS. Heterogeneous signals across different

systems and components (e.g., reactor power, turbine pressures, bearing temperatures, and reactor
feedwater pump flows) were provided to supplement these data. The data gathered from the FCS
corresponded to a 5-year time frame, which covered periods of steady-state operation, derates, trips, and
refueling. Steady-state operation is broadly defined as all instances of the reactor operating at above 90%
nominal power; however, fluctuations in power can still be seen in this category. Derates contain all
observations made when the reactor is operating at 5–90% of nominal power. Derates are instances of
reduced power operations and may be caused by environmental, operational, or reliability issues. Trips,
also known as scrams, are emergency shutdowns of the reactor. The refueling time period covers the
initial ramp-down of nominal power, the refueling outage, and the subsequent ramp up to steady-state
conditions. This research focused on predicting CP temperatures within the broadly defined steady-state
conditions.

Large groups of raw data signals are rarely the optimal choice of model inputs. Raw data should be
processed, cleaned, and pruned to improve model performance. Raw data can be subject to missing
information, outliers, sensor and process noise, different data scales, etc. Many of these issues can be
mitigated via data preprocessing (e.g., data cleaning, feature scaling, and feature selection), thereby
reducing their effects on model performance. The data preprocessing steps implemented in this research
are described in the subsections below.

2.2.1 Data Cleaning
The data were cleaned, processed, and pruned before being analyzed in the short-term forecasting

models. The data cleaning focused on addressing any missing data, potential outliers, data selection, and
scaling. Missing data were primarily noted when the system or component was offline, in which case the
data were left as missing. However, if the component was online and the missing data were due to a
sensor or data archival error, the missing values were interpolated using neighboring values. Daylight
savings time can also be a minor inconvenience, as it entails the skipping or duplication of time steps,
depending on the time of year. Skipped time steps, in this instance, were assumed to share the same value
as that of the previous time step.

Many of the datasets within the steady-state portions were heavily skewed in one direction or another.
Potential outliers within these datasets were flagged as a result of being four standard deviations away
from the mean. For example, the feedwater flow seen in Figure 2 has several potential outliers marked.
The axes in this figure, as well as the others in this report, have been anonymized to protect the plant's
identity. The potential outliers were replaced using a median filter applied via a sliding window approach.
The data were recorded hourly, so a window of 51 points (slightly over 2 days worth of data) was
empirically selected as the median filter's width. Temperature data can often contain sensor noise,
seasonal variations, or long trains of outliers. A median filter of 700 (roughly 21 days) was used to
account for seasonal variations and long trains of outliers. Additional data cleaning for all equipment
parameters included standardizing the measurements to zero mean and unit standard deviation to account
for the different scales seen within the data. Standardization of data is generally considered a best practice
before using most ML models. After data cleaning, selecting the relevant parameters becomes important.
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Figure 2. Outliers being identified and rectified for the average feedwater flow over time. The data range
has been normalized so that the maximum value of the variable is 1, and the normalized horizontal axis
represents the fraction of plant operation time.

The two primary feature selection techniques covered in this report are variance inflation factor (VIF)
and Shapley Additive Explanations (SHAP). VIF is a filter-based technique for reducing
multicollinearity. SHAP is a wrapper-based technique for determining the contribution, and thus the
importance, of each input feature. Both these techniques are detailed below.

2.2.2 Variance Inflation Factors
Multicollinearity occurs when two or more predictor variables are highly correlated [26]. This can

lead to unforeseen variability in regression analyses, as the strong relationship between the independent
variables distorts the relationship with the dependent variable. Multicollinearity can be rectified in several
ways, such as by removing one or more of the highly correlated variables, either through PCA [9], [27] or
a regularization technique (e.g., ridge regression) [28]. PCA was initially tested with long short-term
memory (LSTM) neural networks, but better results were obtained by simply removing the variables that
corresponded to large VIFs.

VIFs measure the amount of multicollinearity between predictor variables, and can carry a value of
one or greater. A VIF value of one represents no correlation, whereas values of either five or 10 are
commonly used to indicate highly correlated variables [26], [27]. In this research, a VIF of five was used
to identify highly correlated variables that are candidates for elimination. VIF can be calculated in two
steps. The first step is to withhold one of the predictor variables, then employ an ordinary least square
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regression to predict that variable by using the remaining variables, as per Equation 1:

where is a constant, is an error term, is the variable to check for multicollinearity, and are the other
predictor variables. The second step in calculating the VIF is reflected in Equation 2:

where is the coefficient of determination from Equation 2. This two-step process can be completed for
each predictor variable to determine its VIF. Variables were then removed if their VIF was five or greater,
thus eliminating multicollinearity from the input space. The one exception to this rule was the pump
temperature being estimated. Because temperatures are relatively slow-moving parameters, one would
expect that the best predictor of temperature for time t+1 would be the temperature at time t. Therefore,
the pump temperature remained in the input space, while other parameters were removed to reduce the
multicollinearity in the input space.

VIF has been used to check for and remove multicollinearity in a variety of different situations. [29]
used VIF to check for multicollinearity between the input variables for a multivariate logistic regression
in order to determine the factors associated with the death outcome in patients suffering from severe
reactions to COVID-19. No multicollinearity was seen, as each variable had a VIF of less than two. [30]
used a multivariate logistic regression to determine the prognostic nutritional index's impact on
postoperative pulmonary complications. They used a VIF threshold of 10 for determining highly
correlated variables, then eliminated them from the analysis. [1] used VIF to remove multicollinear
variables before estimating the state of health for lithium-ion batteries, using a gradient boosted decision
tree. In their analysis, the VIF empirical cutoff was set at 10 for strong multicollinearity, and 100 as the
threshold for removal. Each of these examples had differing cutoffs for determining whether the predictor
variable space exhibited enough multicollinearity to warrant action. However, [31] showed that rules of
thumb for VIF and its tolerance should be put into context with other variables (e.g., sample size and
variance of the independent variable) that might affect the variance of the ith regression coefficient in
Equation 1. Even though the dataset in this report satisfies these rules of thumb, a threshold of five was
selected so as to be conservative.

2.2.3 Shapley Additive Explanations
SHAP values are based on a game-theoretic concept that considers each input feature as a "player" on

a "team" of features that work together to influence the model's overall output [32]. A baseline model
output is first determined by averaging over all the predictions for a given model. Each specific model
prediction is then considered as a function of input features which deviates the prediction from the
baseline model output. The feature's influence on each prediction is taken into consideration based on
different combinations of input features [33]. SHAP values use an additive feature attribution approach,
meaning that the output is a linear combination of the input variables [33]. In this manner, SHAP
empirically determines the influence each feature has on the prediction output [32]. Computing the exact
solution for the SHAP values is, by nature, an exponential problem, typically leaning it toward being
infeasible [34]. However, a SHAP approximation can be made using an explanation model. The original
model is associated with the explanation model with simplified inputs , and is expressible as:

where M is the number of input features, represents the baseline model output, and represents the SHAP
values. The SHAP values themselves can be approximated through a variety of methods, including Kernel
SHAP, Deep SHAP, and Tree SHAP. A more detailed explanation of the SHAP value formulation and
interpretation can be found in [35].
SHAP values have primarily been used to try to explain how a specific feature affects the model's output.
For example, SHAP values were used in conjunction with the Cox hazards model to identify the most
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important features that increase your odds of death over the next 20 years (e.g., age, sex, systolic blood
pressure, and poverty index) [36], and were also used to identify the most important features in predicting
shear wall failure modes [33]. [37] used SHAP values as a feature selection method before implementing
ML methods (e.g., extreme gradient boosting and support vector regression [SVR]) to predict the total
energy consumption of electric vehicles under realistic conditions, using parameters such as trip distance,
tire type, power, and air conditioning. [33] predicted failure modes of reinforced concrete walls by
employing RF ML models, then used SHAP values to rank the most influential input variables. ML is
often criticized as a black-box approach, but SHAP values can lead to more interpretable models. For
example, [38] used SHAP values to analyze feature contribution after prognosing the remaining useful
life of turbofan engines. Our use of SHAP values, however, is to improve model feature selection by
eliminating unimportant signals before they are inputted to the final model. Irrelevant or redundant inputs
increase both the dimensionality of the data and the computational cost of finding the global minimum
[39].

3. SHORT-TERM FORECASTING MODEL SELECTION
This report focuses on applying feature selection to data-driven approaches for short-term forecasting

of plant parameters. Data-driven methods are excellent because every component interaction need not be
modeled to produce usable results. These methods are generally inexpensive to create, and are quicker to
develop than their physics-based counterparts [40]. The primary limitation of data-driven methods is the
data themselves. The data must be plentiful and cover the entire expected range of operations.
Extrapolation that leads to non-physical results can occur for predictions outside the range of the training
dataset [40]. Data may not exist for all desired conditions. For example, new or mission-critical systems
may not have the run-to-failure or operational data required to produce adequate forecasting models for
certain operating conditions. Even with these shortcomings, data-driven models are widely used and
implemented. This research focuses on three particular models for the short-term forecasting of plant
parameters: LSTM neural networks, SVR, and RF. These models were selected due to their time series
forecasting capabilities and ease of implementation within the Python coding environment.

3.1 Long Short-Term Memory
LSTM is a type of recurrent neural network that incorporates unique memory cells to learn long-term

relationships between the inputs and outputs [4]. As with classical recurrent neural networks, LSTM
networks process temporal information to develop the relationship between previous inputs and the
current output. However, LSTM networks have a hidden state that serves as memory and interacts with
the current output. This stored, hidden state is updated as new inputs arrive. A forget gate is also common
in LSTM architectures as a means of forgetting some of the previous memory cell states, thus helping
boost performance. The output of the forget gate is used to inform and update the hidden state of the
LSTM. Many different types of activation functions can be used within the LSTM layers. Number of
hidden layers, batch size, and number of epochs are examples of hyperparameters that must be optimized
before implementing the fitted model into the system. In this report, a grid search approach was used to
optimize the LSTM hyperparameters, but random and Bayesian search methods could also have been
used [41], [42]. A more detailed guide to constructing LSTM networks is found in [39].

3.2 Support Vector Regression
SVR is a kernel-based regression technique featuring two primary components: a kernel function and

an optimization routine. The kernel function first transforms the data into a higher dimensional feature
space. The optimization routine then tries to minimize the generalization error. The solution then depends
only on a subset of the training data (i.e., support vectors) that lies along the separation boundary [43]. In
this report, a radial basis function kernel was implemented.

3.3 Random Forest
RF is a decision tree ensemble usable for either classification or regression [44]. The output is chosen

based on a majority vote from the group of decision trees comprising the RF. Because a lone decision tree
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is subject to high variance and noise, the RF addresses this by generating multiple trees, using
bootstrapped samples from the training data [45]. Overall, RF is a straightforward, easy-to-implement ML
model with relatively few hyperparameters to optimize (e.g., total number of trees to generate, minimum
number of samples to split, and split criteria). The RF models generated in this research used an ensemble
of 100 decision trees, each with at least two samples to split. The split criteria was based on the weighted
impurity decrease equation given in Equation 4:

where is the number of samples at the current node, N is the total number of samples, I is the impurity, is
the number of samples in the right child, is the right impurity, is the number of samples in the left child,
and is the left impurity [5]This weighted impurity calculates whether or not the subsequent split would be
beneficial.

4. MULTI-STEP FORECASTING
The simplest forecast is one-step ahead, since it represents the least amount of extrapolation from the

known data. Intuitively, we expect better results, as there are fewer opportunities for unseen transients,
depending on the size of the step. The 24-hour-ahead predictions in the previous report [22] were created
using one-step-ahead predictions. This was accomplished by resampling the data so that each time step
was 24 hours apart rather than the original 1-hour frequency. This method yielded acceptable results for
that dataset, primarily due to the amount of data available: 5 years worth. However, the other two
validation and verification (V&V) datasets discussed in this report only contain a year worth of data. By
resampling the data from an hourly to a daily frequency, and then further dividing the data into training,
testing, and validation sets, the V&V dataset becomes sparse for learning trends. This resampling strategy
is therefore inappropriate for these datasets. With limited data, each point is critical for training the
model. Several methods for making multi-step-ahead time-series predictions were tested to determine the
optimal strategy for forecasting. These prediction strategies include direct multi-step forecasting,
recursive multi-step forecasting, and direct-recursive hybrid (DirRec) multi-step forecasting [10]. These
methods are discussed in further detail in the subsections below.

4.1 Direct Multi-step Forecasting
The first method for making predictions that are multiple time steps ahead is the direct multi-step

forecasting method. In this method, the model is trained to directly predict component measurements at a
set time into the future. This method is similar in appearance to a one-step-ahead prediction, but with an
increased prediction horizon. Equation 5 shows an example of a one-step-ahead model:

where the previously observed data (xt, xt-1, …, xt-n) is used to make a prediction that is a single time step
ahead, xt+1, and n is the number of previously observed time steps to be inputted into the model. In direct
multi-step forecasting, this prediction horizon of one time step is extended to the desired length. Equation
6 shows an example of a model predicting two steps ahead with the same data previously observed in
Equation 5. The difference between Equations 5 and 6 is the model’s predicted outcome (xt+1 vs. xt+2), due
to the extended prediction horizon.

This prediction horizon can be extended even further. In this report, hourly recorded data were used
to predict component measurements twenty-four time steps (i.e., one day) ahead. However, there are
limitations to this technique. Extending the prediction horizon will, in most cases, diminish the accuracy
of the predictions. This type of model has no opportunity to learn the dependencies between forecasted
predictions. Changes in one variable may directly affect another, since this type of model might overlook
this type of interaction, as it directly predicts future values.

Similarly, a direct, multi-output, multi-step forecast casting strategy can be implemented in which one
model attempts to predict each consecutive future step, as seen in Equation 7:
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This type of model will have similar or exacerbated drawbacks in comparison with direct multi-step
forecasting, due to the additional predicted outputs. This will likely lead to a more complex model that
requires more time to train, along with more data to prevent overfitting. Therefore, to recap, model 1
(Equation 5) attempts to predict one step ahead, model 2 (Equation 6) attempts to predict two steps ahead
using the same inputs as model 1, and model 3 tries to predict both one and two steps ahead while still
using the same input parameters.

4.2 Recursive Multi-step Forecasting
Another method for making multi-step-ahead predictions is recursive multi-step forecasting, which

entails a single model that makes one-step-ahead predictions. After a prediction is made, the input
window is shifted by one step, and the model’s own prediction is used as one of the inputs. This process
of recursively using the model’s output as an input is repeated until the desired prediction horizon is
reached. Equations 8 and 9 show a single step in the recursive multi-step forecasting process. In Equation
8, model 1 makes a single one-step-ahead prediction, x(t+1). This prediction is then fed back into itself, as
seen in Equation 9, with model 1 then being used to make another one-step-ahead prediction, x(t+2).

This model has its disadvantages—namely, the accumulation of prediction errors. There will
inevitably be some prediction error between the predicted output of Equation 8 and the ground truth. This
error is then inserted back into the model in Equation 9, where the error can increase the deviations from
the ground truth, thus resulting in accumulated prediction errors. Longer prediction horizons lead to
greater accumulation of errors.

4.3 Direct-Recursive Hybrid Multi-Step Forecasting
DirRec multi-step forecasting combines direct and recursive forms of prediction in order to mitigate

the disadvantages of each. In DirRec multi-step forecasting, several models are trained, each with a
minimal prediction horizon. However, the prediction from one model is then fed as an input to another
model that makes the same length prediction. In this way, a series of models are used in succession to
extend the prediction horizon. The first model, seen in Equation 10, is used to predict a single step ahead,
x(t+1). This prediction is then used as an input for model 4, seen in Equation 11, which is used to make
another one-step-ahead prediction, x(t+2).

This approach aims to minimize the disadvantages of both the direct and recursive approaches. With a
series of models, dependencies between predicted outcomes can be observed, thus reducing the
disadvantage of direct approaches. With multiple models being created, there is also an opportunity to
correct some of the accumulating errors that one specific model might make, thus reducing the drawbacks
of the recursive model. However, numerous models can be computationally expensive to train. With each
model making one-step (i.e., one hour)-ahead predictions, 24 models would need to be trained to predict a
single day in advance.

In this report, the recursive multi-step forecasting method produced prohibitively large accumulations
of prediction errors. And though the DirRec multi-step forecasting method avoided such error
accumulation, training multiple models became computationally expensive. A sample case from each
forecasting method is shown below to demonstrate that method’s forecasting ability. In this report, the
direct multi-step forecasting method was chosen as the primary method for forecasting, due to its
relatively low degree of prediction error and computational expense.
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5. RESULTS
As mentioned earlier, the NPP data used for the analysis in this section originate from a BWR system

and have been anonymized to protect the privacy of the plant. As a result, all data shown remain in
standardized form, with zero mean and unit variance, and have been shifted slightly.

5.1 Metrics Used and Model Parameters
The model outputs were compared using the root mean square error (RMSE), as calculated via

Equation 12:

where N is the total number of predictions, is the model's predicted output, and is the observed output.
The hyperparameters for LSTM are important components that help determine the quality of the

model's predictions and thus the usefulness of the end product. However, this report primarily focuses on
how the choice of input features affects model performance. Optimal LSTM hyperparameters were
identified by using a grid search method for one set of input variables and prediction horizons from this
dataset, then the best results for the hyperparameters were used for all the LSTMs networks thereafter.
The chosen hyperparameters are given in Table 1. The model was trained for a maximum of 250 epochs,
or until the validation loss did not improve for 10 consecutive epochs. Early stoppage of training was
implemented to avoid overfitting the model to the training data. The dropout layer and L1 & L2
regularizers were all added to improve the LSTM network's robustness by reducing overfitting. The
hyperparameters for the RF model can be seen in Table 2. The hyperparameters for the SVR, found
through a grid search, are shown in Table 3.
Table 1. LSTM parameters.

Hyperparameter Value
Number of LSTM units 1000
Number of layers 4
Batch size 64
Epochs Up to 250
Dropout 20%
Validation split 10%
Optimizer Adam
Activation function ReLu
Learning rate 0.0001
Loss function Mean square error
L1 & L2 regularizer 1e-5

Table 2. RF parameters.

Hyperparameter Value
Number of trees 1000
Measure of split quality Squared error
Bootstrapping True
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Table 3. SVR parameters.

Hyperparameter Value
C 46.416
ε 0.044
γ 0.464

5.2 Datasets Based on VIF and SHAP Analysis
The target variable to predict in this analysis was pump bearing temperature, using different

combinations of the 78 recorded variables (e.g., reactor power, feedwater flows, temperatures, pressures,
and other parameters recorded throughout the plant). The parameter values from associated systems such
as the turbine control systems are included in the 78 recorded variables. The possible input features were
the recorded variables post-preprocessing. These variables were grouped and used as predictors, as per the
criteria listed in Table 4. No further feature engineering occurred, as this report's primary objective was to
identify the best combination of features from a select set of features. The first feature set used all 78
variables, regardless of their relationship to the pump's bearing temperature. The second feature set
started with all 78 variables, then removed those with a VIF of five or more to eliminate the
multicollinearity within this feature set. By removing the multicollinearity from the set by using VIF as
the basis for feature selection, the total number of features dropped from 78 to 36. Note that the current
pump bearing temperature was never removed from any of the feature sets, as it is the single best
predictor of future pump bearing temperatures. The next feature set consisted solely of the variables that
had a correlation of 0.9 or greater with the predicted pump bearing temperature. More specifically, these
variables were the current pump bearing temperature as well as three bearing temperatures from other
pumps. All these variables highly correlated with each another. After removing multicollinearity from this
feature set, the only remaining variable was the current bearing temperature itself. Used on its own, the
current pump bearing temperature can be seen as a control group for determining whether the information
added by the other variables actively helps or hurts model performance.
Table 4. Comparison of model performance (RMSE * 1e3).

1-hour ahead 24-hour ahead

Selection Method # Features LSTM SVR RF LSTM SVR RF

All 78 318 ± 258 34 92 ± 4 326 ± 26 44 132 ± 9

All with VIF reduction 36 206 ± 18 18 83 ± 4 365 ± 19 32 85 ± 6

Corr > 0.9 4 8 ± 4 7 114 ± 10 37 ± 4 39 238 ± 14

Feature by itself 1 7 ± 4 8 6 ± 0.2 36 ± 2 27 51 ± 1

Corr > 0.8 14 29 ± 7 11 95 ± 13 160 ± 9 28 130 ± 11

Corr > 0.8 with VIF 6 6 ± 1 9 9 ± 1 52 ± 5 27 60 ± 4

Location-based 11 15 ± 3 7 61 ± 10 117 ± 15 33 153 ± 19

Location-based with VIF 8 14 ± 5 13 61 ± 10 124 ± 9 46 97 ± 14

SHAP values 2 6 ± 2 6.6 35 ± 2 36 ± 14 26 63 ± 4
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The next feature set contained variables that had a correlation of 0.8 or greater with the pump bearing
temperature. These 14 variables included turbine exhaust temperatures, pump bearing temperatures, and
pump motor temperatures. Using the VIF values to remove any multicollinearity from this feature set
reduced the number of variables from 14 to six, while still retaining the same variety of features (i.e.,
redundant turbine exhaust and bearing temperatures were removed from the feature set). One feature set
was location-based (i.e., variables within the same loop were grouped together) and contained variables
within the same loop as the predicted variable, including feedwater temperatures/pressures, pump bearing
and motor temperatures, and condenser pressure. Using the VIF values, the location-based feature set was
reduced from 11 variables to eight.

The final feature set was based on the SHAP values calculated for every variable in order to predict
the temperature of a specific bearing within pump 1. Because the mean SHAP value represents the
average impact a variable has on the model output, it was utilized to define feature importance, as the
most important features are those that most greatly affect the model's outcome. The four most important
variables, according to the magnitude of the mean SHAP values, were all pump bearing temperatures, as
shown in Table 5. Pump 1 had multiple bearings, each with recorded temperatures, so the target variable
being predicted was labeled pump 1a. Pump 1b related to the temperature of a separate bearing on the
same pump as pump 1a. Pump 1a's temperature had the greatest impact on the prediction outcome.
Although the temperature measurement site for pump 1b was physically close to pump 1a, it contained
little in the way of useful new information, thus leading a low mean SHAP value.

5.3 Short-Term Forecasting Model Performance
Each of the feature sets was used as an input to make one- and 24-hour-ahead predictions using

LSTM, SVR, and RF. Since LSTM and RF results can vary based on the seed being used to train the
weights or bootstrap, each model was then retrained 10 times in order to compute the average RMSE and
its standard deviation. The mean RMSE and its standard deviation, each multiplied by 1,000 for easier
viewing, can be seen in Table 4. A lower mean RMSE represents better prediction accuracy, while a
lower standard deviation represents more consistent model results. Based on the mean RMSE for the one-
hour-ahead predictions, Table 4 shows the three top models to be RF using one variable, LSTM using the
correlation >0.8 with VIF reduction, and LSTM using SHAP-determined inputs.

LSTM, the structure of which is described in Table 1, seemingly benefits from selectively choosing
which variables to pair with the response variable in the input space. Adding too many unrelated variables
diminished the model performance. SVR does not seem to suffer as greatly from this limitation, since
reasonable results were produced when using all variables. SVR also had results comparable to those of
LSTM and RF when using only the current value of the response variable as an input. SVR outperformed
LSTM and RF when using eight or more variables. RF had the most sporadic results of the three models.
The most accurate and consistent model resulted from using only the response variable. Inclusion of
additional, very highly correlated variables significantly increased the mean RMSE, as demonstrated by
the feature sets with correlations of 0.8 or higher. In general, the reduced standard deviation for the
RMSE indicates that utilizing VIF values to remove multicollinearity invariably improves model
consistency.

The one-hour-ahead predictions made by LSTM using SHAP-determined inputs can been seen in
Figure 1. We again emphasize that the axes have been anonymized to protect the plant's privacy. The test
data cover temperatures over a 10-month period. The average temperature is seen to decrease before
slowly increasing again. This is a seasonal effect caused by the temperature of the local water source used
as the plant's heat sink. This seasonal effect can be seen in the bearing temperature, which ran cooler in
the winter months and hotter in the summer months. The zoomed-in portion of the inset graph in Figure 3
better captures the model estimate and its 95% confidence interval. The LSTM captures the pump
temperature trends very well, as seen by the low mean RMSE, due to the actual measurement being
within the 95% confidence intervals.
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Figure 3. Predictions of pump temperature 1 hour ahead, using the SHAP-determined input to an LSTM
model. This includes a closer view of the pump temperature predictions in order to provide a clearer view
of the 95% confidence interval.

Each of the feature sets in Table 4 was also used as an input to predict the pump bearing temperature
24 hours ahead, using LSTM, SVR, and RF. Making a multi-step-ahead prediction can be more
complicated than a one-step-ahead prediction, so two different methods were examined. First, a recursive
method was tested. The LSTM model was used to make one-step-ahead predictions, then the output was
looped into the input so the model could make another one-step-ahead prediction. By repeating this
process multiple times, the one-step-ahead model can make 24-hour-ahead predictions. However, any
error seen between the estimated and actual values during the one-step-ahead prediction was propagated,
as the model uses the estimated prediction with its error to make the next prediction. Over a 24-step
process, this led to poor results and a higher RMSE (i.e., 4.81) for the LSTM when just using the feature
by itself. This is significantly larger that the direct method's mean RMSE of 0.036, reported in last three
columns in Table 4.

For the direct method, the training and test data were first decimated to only include data recorded
once every 24 hours. In this way, the models would still only be making one-step-ahead predictions, but
that step would be for 24 hours rather than 1 hour. When a direct approach was taken, the 1- and 24-hour-
ahead predictions generated similar results. In general, LSTM performs better with fewer, more focused
features, and VIF reduction helps enhance model consistency by reducing the standard deviation of the
RMSE. SVR consistently performed the best of the three models in regard to the 24-hour-ahead
prediction. Again, each SVR's RMSE was on the same order of magnitude, suggesting that this model is
robust with regard to inputs. RF saw its best performance by using the SHAP-determined inputs, but it
once again demonstrated poor performance when using highly correlated variables.
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Figure 4. Predictions of pump temperature 1 day ahead, using the SHAP-determined input to an LSTM
model. This includes a closer view of the pump temperature predictions in order to provide a clearer view
of the 95% confidence interval.

To better compare the results from the 1- and 24-hour-ahead predictions, the LSTM results from
using SHAP-determined inputs are given in Figure 4. Unlike the previous 1-hour-ahead predictions, the
24-hour-ahead predictions do not always reflect the actual measurements closely enough to fall within the
95% confidence interval.
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For LSTM and SVR, the SHAP-determined inputs produced the best results with respect to the mean
RMSEs for both prediction horizons. However, the best RF models contained only the response variable
as an input. By adding more variables, a long train of outliers began to crop up. The outliers for the 1-
hour-ahead prediction using RF can be seen in Figure 5. The majority of the model's predictions are close
to the actual measurement. However, a large, prolonged deviation can be seen between hours 1,000 and
2,000, and another large deviation can be seen around hour 6,200 (both indicated by red arrows). These
deviations were not seen in the results from the LSTM and SVR, which used the same training dataset.
This suggests that LSTM and SVR are more adept at learning the relationships between multiple predictor
variables in a regression analysis.

Figure 5. RF using SHAP inputs and making 1-hour-ahead predictions showed a higher RMSE, due to
poor predictions between time steps 1000 and 2000, as well as for the time step at time 6,200.

The FCS in this plant contained three primary loops. These trains of pumps operate in loops that are
parallel to one another. If one loop decreases its flow, the other must take on more flow so that the reactor
core receives a constant supply of coolant during steady-state operation. The site of pump 2's bearing
temperature measurement was located on a pump in a loop parallel to pump 1a. When the pump works
harder to push more coolant, the temperature increases. It is suspected that this temperature fluctuation
can be used to indirectly describe the amount of flow through the pump—and subsequently, the amount
of flow through that particular loop. Pump 2's temperature may then be indirectly providing new
information on how the train of pumps within each loop is being operated. The site of the pump bearing
temperature measurement for pump 3 was located within the third loop of the system. Pump 3's bearing
temperature seemed to provide very little new information for the analysis, as indicated by the low mean
SHAP value in Table 5. With two out of three flows being indirectly calculated via these temperatures,
the third flow may also be assumed, given an absence of leaks or degradation, since the overall flow to
the core remains constant during steady-state operation. Pumps 2 and 3 may then be providing some
redundant information about the operation of the other loops. Based on the mean SHAP values, the
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SHAP-determined feature set contained two variables: the bearing temperature of pump 1a (the target
variable being predicted) and the bearing temperature of pump 2.

Table 5. Mean SHAP values for determining feature importance.

Component Mean (|SHAP value|)
Pump 1a 0.810
Pump 2 0.110
Pump 3 0.015
Pump 1b 0.011

LSTM, SVR, and RF each showed comparable results for the 1-hour-ahead predictions when the
optimal input features were selected. For the 24-hour-ahead predictions, SVR was the clear winner,
followed by LSTM and then RF. This does not necessarily speak to LSTM's prediction capabilities in
general. For LSTM, the model's hyperparameters were chosen via grid search, and these same
hyperparameters were used for the entirety of the study, regardless of inputs. By re-optimizing the
hyperparameters based on each feature set, the results may improve. However, in the context of this
study, it would be harder to distinguish whether this improvement was based on the input or on
hyperparameter selection.

The SHAP values determined the best set of inputs for both LSTM and SVR in this study. This is a
wrapper-based method that considers both the correlations and dependencies between the inputs. VIF is a
filter-based method that primarily focuses on the input variables' relationship with the response variable,
not the information contained within the other predictor variables. Although VIF reduction successfully
reduced the total amount of multicollinearity within the input space, as well as the variability in the model
predictions, this does not always yield the optimal set of inputs in comparison to other methods.

5.4 Validation
For the V&V process, the same methodologies and workflow were performed on three independent

datasets. The first came from a BWR, while the other two came from pressurized water reactors (PWRs).
The specific systems of interest include a BWR’s CP and CBP, a PWR’s steam generator feedpump, and
another PWR’s main turbine. The fundamentals of each component and the specific signals recorded are
explained below.

5.4.1 BWR Condensate Pumps and Condensate Booster Pumps
CPs and CBPs are found within the FCS, the primary purpose of which is to condense steam and

collect the drainage in the main condenser before purifying, preheating, and pumping the water back to
the reactor vessel [25]. The CPs provide the driving force for pushing the condensate through auxiliary
systems such as the steam jet air ejectors condenser, steam packing exhaust condenser, off-gas condenser,
and demineralizers, all of which work to condition the condensate. Afterwards, the CBPs are the driving
force of the flow as the condensate travels through a string of low-pressure heaters that work to preheat
the water to the correct temperature. In the BWR system of interest, the CP and CBP are driven by a
shared motor.

5.4.2 PWR Steam Generator Feedpump
In a PWR system, the primary coolant flows from the reactor to the steam generator to transfer its

thermal energy to the secondary coolant via numerous tubes [46]. With sufficient heat, the secondary
coolant starts to boil into steam before being sent to the turbine system. The steam generator feedpump is
what supplies the driving force for the secondary side’s coolant to flow through the steam generator.
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5.4.3 PWR Turbine
In a PWR system, the steam formed in the steam generator is passed to the main turbine generator,

where it is used to make electricity [46]. The steam is then directed to low-pressure turbines before being
routed to the main condenser. Throughout this process, the steam is piped through moisture separators
and reheaters that dry and reheat the steam to prevent potential turbine damage due to the moisture
content of the steam, while also improving the efficiency of the turbine.

5.4.4 Validation Model Performance
This section focuses on how well LSTM and SVR predicted plant process datasets over two

prediction horizons (1 hour and 1 day) using different datasets. Three different multi-step approaches
were tested for the main turbine thrust bearing temperature in order to determine which approach would
be used for all other predictions. The direct, recursive, and DirRec multi-step approaches produced
RMSE’s of 0.294, 4.816, and 0.301, respectively, for the anonymized bearing temperature dataset. For
this model, the recursive method results were considered poor, due to the much larger RMSE than seen
for the other two methods. This larger RMSE was due to prediction error accumulation while recursively
looping the output from the one-step-ahead model back into the input. The predictions obtained by
applying the direct and Dir-Rec methods on the anonymized temperature data can be seen in Figure 6.
The direct method, seen in green, more closely follows the peaks as the temperature of the bearing
oscillates. The cause of this oscillation, which is on the order of 1–2°C, is unknown, due to a lack of
information on how the unit was operated or if the system had any underlying conditions. Although the
DirRec method had comparable results, the direct method was chosen thanks to having the lowest RMSE,
and was used for the remainder of the V&V process.

Figure 6. Comparison of direct vs. direct-recursive forecasting strategies.

LSTM and SVR were used make 1-hour (i.e., one step) and one-day (i.e., 24 step)-ahead predictions,
using data from three different NPPs (i.e., PWR 1, PWR 2, and BWR). The PWR 1 and PWR 2 datasets
contained a year worth of data, while the BWR dataset contained 5 years worth. The mean of the RMSEs
from the cross-validation approach demonstrates the modeling method’s expected accuracy when used to
make predictions. The RMSEs’ means and standard deviations from the LSTM and SVR models for the
1-hour- and 1-day-ahead predictions are shown in Table 6.
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Table 6. 1-hour- and 1-day-ahead predictions for both LSTM and SVR.

Dataset 1 step ahead 24 steps ahead

Plant Parameter Predicted Model
Mean
RMSE

Std
Error

Mean
RMSE

Std
Error

PWR 1 Main Turbine Bearing Temp
LSTM 0.0796 0.0411 0.7932 0.5450
SVR 0.0214 0.0080 0.3194 0.1202

PWR 1 Generator Output
LSTM 0.2871 0.2031 2.2636 2.8338
SVR 0.0806 0.0422 1.5611 1.2424

PWR 2 Steam Generator Flow
LSTM 2.4792 3.0455 12.435 17.333
SVR 1.4070 2.4270 5.6299 5.3154

BWR Condensate Pump Bearing Temp
LSTM 0.0792 0.0722 0.2991 0.2724
SVR 0.0323 0.0496 0.2238 0.2184

In Table 6, the RMSEs were calculated after converting the predictions back into their respective
engineering unit of measurement. Temperatures were captured in °C, generator output in MW, and steam
generator flow in thousands of gallons per minute. The first point of comparison regards the prediction
accuracy of SVR compared to that of LSTM. In each dataset, SVR outperformed LSTM. This may be due
to how each model was optimized. SVR has a convex optimization, so choosing the optimal
hyperparameters (i.e., regularization parameter, epsilon tube, and kernel coefficient) can be done
efficiently. For LSTM, there are many hyperparameters to consider, some of which are listed in Table 1.
This makes optimization more difficult and computationally expensive. After the hyperparameters are
chosen, the LSTM model still must be trained to the dataset of interest. In this report, the optimal
hyperparameters were found for one dataset and then applied to every other dataset. Of all the datasets,
the BWR CP bearing temperature dataset, in which the LSTM hyperparameters were optimized, showed
results that were closest, in terms of mean RMSE, with those of the SVR. This suggests that further
improvements may be seen if, with each new dataset, the optimal architecture is selected for each LSTM.

In comparing the results found within Table 6, one notices that 24-step-ahead predictions perform
worse than one-step-ahead predictions. This is logical, as more events and transients can occur over a
longer prediction horizon, making forecasting more difficult. Another trend that sometimes becomes
apparent is a lag in the 24-step-predictions (see Figure 7). The one-step-ahead predictions for both LSTM
and SVR seem to trend well with the actual measurements; however, the 24-step-ahead predictions
produce a noticeable delay. The predictions mimic the same patterns as the temperature fluctuations, but
do not accurately predict them as they occur. This is most likely due to a lack of predictor information for
informing the model of the cause of these 1–2°C fluctuations that seemingly oscillated over a two-week
period. The lack of information (e.g., operating or maintenance logs) prevented the source of the
fluctuations from being determined. With the derates removed, the 24-step-ahead model was still
expected to predict 24 steps ahead, even though this no longer corresponded with the basis of the original
24-hour-ahead prediction. This could be one cause of the inflated mean RMSE values.
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Figure 7. Forecasting the main turbine thrust bearing temperature using LSTM and SVR for both one- and
24-step-ahead predictions.

Another interesting comparison relates to LSTM’s 1-step- and 24-step-ahead predictions of the PWR
1 main turbine bearing temperature, as compared to LSTM’s 1-step- and 24-step-ahead predictions of the
BWR CP bearing temperature. The mean RMSEs for both of the one-step-ahead predictions are very
close to each another: 0.0796 and 0.0792, respectively. However, the 24-step-ahead predictions deviate
significantly with mean RMSEs of 0.7932 and 0.2991, respectively. The difference seen between the
mean RMSEs of the 24-step-ahead predictions most likely attributable to the increased amount of data in
the BWR dataset (5 years worth vs. 1 year worth) having yielded increased prediction accuracy. Although
LSTM still did not beat SVR in terms of overall accuracy, it did see a bigger improvement when moving
from 1-step- to 24-step-ahead predictions for this variable.
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Figure 8. Anonymized steam generator flow and time, showing a significant derate at 2009-11 and an
outage at 2021-03.

For both the models and prediction horizons in Table 6, the RMSE standard deviation for the PWR 2
flow predictions are large. This is because two separate sections of the flow data represent abnormal
behavior (see Figure 8, where the y-axis was anonymized and the x-axis was shifted to protect the plant’s
identity). In Figure 8, the first large deviation is seen at time 2009-11. This large reduction in flow
occurred when the reactor’s thermal power exceeded 90%. The other section of abnormal behavior
occurred at around 2010-02, when the reactor was being ramped down toward a regularly scheduled
outage that lasted through 2010-03. The flow appears to linearly increase in a strict fashion. Each of these
sections were poorly predicted, as their behaviors were not captured in the training data. With these two,
operational anomalies present, the mean RMSE for the SVR 24-step-ahead-predictions was 5.629. After
removing these outliers from the testing data, the mean RMSE fell to 1.744. In the data cleaning process,
each of these abnormal sections were missed. The large derate in flow remained within three standard
deviations, and the linearly increasing section occurred while the reactor’s thermal power was above 90%.

Overall, each model made good predictions based on the new datasets. However, as seen with the two
flow outliers, data-driven models can only effectively be relied upon to predict activity that has been seen
within the training dataset. Model performance can be improved by supplementing the training set with
more information if available; although, unfortunately, this is rarely the case.

6. SUMMARY AND PATH FORWARD
This report demonstrated the expected accuracy and consistency of short-term forecasting ML models

when given new data from different systems. Prognostic and short-term forecasting models are a key
enabling technology that can be used to reduce operations and maintenance costs by enabling condition-
based predictive maintenance. This research showed that a model’s prediction accuracy depends on
several factors, including the model’s architecture, the prediction horizon, and the training dataset itself.
Each ML model must be optimized in some way to the dataset of interest, as the model’s performance
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directly relies on it. SVRs have fewer hyperparameters than LSTMs, making them less computationally
expensive to optimize. This research also showed that model performance degraded as the prediction
horizon increased. In addition, this research showed the importance of having a representative training
dataset. When the plant experiences transients not within the dataset, as seen in the PWR 2 flow
predictions, the model cannot be relied on to predict such unseen transients accurately. The analysis in
this report only covered operating conditions at steady-state conditions (as defined by the reactor’s
thermal power). There is a need to expand this work to non-steady-state operating conditions in order to
cover the full range of the reactor’s operating lifecycle (i.e., derates, trips, and ramp downs toward
outages). During these transient operating conditions, the system is vulnerable to degradation, and
knowledge of the future condition of critical operating equipment is essential for enabling predictive
maintenance.

This report also described the SHAP feature importance values for selecting a representative dataset,
based on feature importance. Other feature selection techniques (i.e., filter, wrapper, and embedded
methods [47]) and dimensionality-reduction methods (e.g., principal component analysis) should be
explored to determine whether an optimal input variable space can be developed. Feature importance
values can potentially identify the features that most contribute when predicting future plant parameters.
This could be incredibly useful when predicting certain parameters, such as gross load. In the Results
section (i.e., Section 5), low pressure export flow was a major influencer for forecasting gross load. As
low-pressure steam is exported to other areas of the plant, the gross load is reduced. With a wide array of
sensors across many components and systems, new critical components can be determined based on how
they influence other system parameters. These components would also then need to be analyzed by
subject matter experts to determine the extent of the causal relationship.

This research will continue to investigate how feature selection can improve model performance, and
perhaps more importantly, how to display the model’s results to the human-in-the-loop who is required to
make decisions. This research will also begin to look at the data-to-human pipeline and how that is
affected by cloud services.
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